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Combining Berendsen Thermostat with Dissipative
Particle Dynamics (DPD) for Polymer Simulation
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In this article we present a new thermostat – theory and simulation results – obtained by combining two
thermostats – Berendsen and DPD types. The new thermostat provides a predictable behavior with
temperatures that do not deviate from the reference and with thermal rate constant agreement between
simulations and theory. The presented work can be used for the study of polymer properties.
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Molecular dynamics has become an important tool in
the study of dynamical properties of molecular solutions,
liquids, macro-molecules [1]. They are also used nowadays
as an alternative (or in parallel) to the laboratory
experiments to study the properties of polymers [2]. In
engineering, computer science, mathematics, physics and
molecular dynamics, multiscaling is a field of solving
physical problems which have important features at
multiple scales. The concept of molecular dynamics
multiscaling [3] are tightly connected to the dual
thermostat scheme developed here because the new
algorithms in the field of molecular dynamics  multiscaling
have required the development of new thermostats.

The purpose of this article is to present a simple and
efficient algorithm for a combined scheme of Dissipative
Particle Dynamics (DPD) thermostat and Berendsen (B)
thermostat. In a previous article [4] we presented an
algorithm for the combination of the SD (Stochastic
Dynamics) thermostat and Berendsen thermostat. Also an
overview of the properties of  new thermostats was
underlined [4]. Now, a complementary method is applied,
the SD thermostat is replaced with the DPD thermostat.
An overview of the DPD influence on the molecular
dynamic properties will be discussed at the end of this
paper.

Global thermostat algorithms lead to a so-called ice-
cube effect, in which the energy of high-frequency modes
is drained into low-frequency modes, particularly into zero-
frequency motions such as overall translation. Our work in
multiscaling led us encountering an ice-cube effect. Our
attempts for solving this problem included the use of
Dissipative Particle Dynamics (DPD) thermostats [5]: we
developed thermostating schemes that, while more
efficient than the ones from the literature, still displayed
the shortcomings of the stochastic thermostat - even
though the dynamic properties were to some extent better
preserved. Our intention is to use the new thermostat
presented in this paper for eliminating the ice-cube effect
in multiscaling simulation. The algorithms presented in this
article will be also used for studying the properties of
polymers with the scope of improving their characteristics
and the materials based on them. This is future work.

This article is organized as follows: first a theoretical
background is presented in the next section, then
simulation results of the combined thermostat will be
described in the experimental part. At the end we will draw
the conclusions.

Theoretical part
In this section, we will discuss the theoretical

background of DPD and Berendsen combined thermostat.
The first subsection outlines the global Berendsen
thermostat. The second subsection gives the theory for
the dissipative particle dynamics (DPD) thermostat in
combination with the global Berendsen thermostat. Then
a thermostat behaviour for the DPD case is described. The
last subsection presents the combination of the two
thermostats.

Berendsen thermostat
In this section we will present a short outline of the theory

for global Berendsen. A detailed presentation can be found
in [6, 7]. First we consider a coupling between a molecular
system – with temperature T – and a bath – with
temperature Tref. This can be done by inserting extra terms
for friction and noise in the equation of motion, which will
result in a Langevin equation of the following form:

(1)

where Ri is a stochastic Gaussian variable with null mean
and with intensity

(2)

and Fi is the systematic force, γi  is the friction rate, γi is the
velocity and mi the mass of the particle.

Through the Langevin equation the system is locally
subject to random noise and couples globally to a heat
bath. In order to impose global coupling with minimal local
disturbance we should modify (1) so that only the global
coupling influence remains.

For making the analytical computation easier we chose
the friction constant to be the same for all particles: γi = γ.
This is a matter of choice; different classes of degrees of
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freedom can be coupled to the bath with different friction
constants. From the derivation of the kinetic energy Ek  we
can see the time dependence of T:

(3)

where N is the number of particles, and

(4)

Using the relation (2)

(5)

and the fact that Ri(t’) is uncorrelated with vi(t) and Ri(t) for
t’ > t, we obtain

(6)

In terms of temperature we have the following equation

         (7)

We can remark that the time constant τT equals (2γ)-1.
Looking at equation (1) and (7), it can be noted that the
global additional temperature coupling equation (7) is
accomplished by the equation:

(8)

Without adding local stochastic terms, according to (8)
it follows that:

   (9)

which is equivalent to (6). In this way we come to (8) as
the new equation of motion. This represents a proportional
scaling of the velocities from ν to λν with

(10)

The change in temperature can also be made equal to

 yielding

(11)

where (12)

and  CV  = N*cV   is the heat capacity of the system. (13)
The rate constant kBer can be rewritten using equation

(12) and (13) as:

(14)

Dissipative Particle Dynamics
The main idea of the DPD-like friction and noise is that it

is applied to relative velocities between pairs of particles.
Theoretically, if the pairwise application is well resolved it
should ensure the conservation of total linear momentum.
The friction and noise can be applied isotropically to the
velocity difference vector. Also, between two particles the
velocity vector can be split into a component perpendicular
to the inter-particle vector and a component parallel to it.
This results in a three dimensional vector: because the
parallel component has one dimension and the
perpendicular component has two dimensions - from its
definition in a plane.

In pure DPD [9] only the parallel component is used.
The perpendicular form has been introduced by Junghans
et al. [10] and the isotropic three dimensional form is in
fact a combination of both. We will consider all three
possibilities. In all three cases there is a velocity reduction
factor f = 1 – exp(-γΔt) and a damping rate factor γ. These
factors depend on the inter-particle distance: a cutoff
distance  beyond which the impulsive friction and noise is
not applied (f = 0) should be chosen.

For determining the inter-particle distance, usually one
uses the short range pair particle list that is already
constructed for the computation of forces. In DPD the
dumping factor is scaled with a factor which depends on
the distance between two pairs of particles; the original
DPD chooses a linear bound between 1 (r = 0) and 0 (r =
rc).

A first sub-step is the selection of a pair of particle that
will be subject to the impulsive friction and noise. This pair
selection can be done in several ways. We consider the
selection of one neighbor per particle. The selection can
be made at random, but it can also be based on a distance-

weighted probability, e.g. proportional to . A selected

pair can be subject to friction and corresponding noise,
with the friction either:

- isotropically in the direction of the velocity itself (iso)
- parallel to rij (par)
- perpendicular on rij (perp)
In the following we will chose one of the three

possibilities or one combination of them. Each choice can
be applied to one or more pairs, also different choices can
be applied to the same particle pair.

Algorithm:
I.for i, j simulation pair step do:

I.1. choose the velocity reduction factor f – fiso, fdpd, fperp
I.2. determine the velocity noise factor g

is the reduced mass of the two particles.

I.3. construct the relative velocity vector v

(17)

I.4. if iso:

(15)

(16)
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I.4.a. choose 3 random numbers  from a
standard normal distribution (mean=1, sd=1).

I.4.b. construct the vector    (18)
Proceed to step I.5.
I.4.c. if par:
I.4.c.a. construct a unit vector e1 in the interparticle

direction:

(19)

where .ij i jr r r= +
I.4.c.b. determine the component of ν in the interparticle

direction:
(20)

I.4.c.c. choose one random number ξ from a standard
normal distribution (mean = 1, sd = 1).

I.4.c.d.  construct the vector

(21)

Proceed to step I.5.
I.4.c.e. if perp:
I.4.c.e.a. Construct a unit vector e1 in the interparticle

direction:

(22)

where rij = rj - rj.
I.4.c.e.b. construct the velocity component perpendicular

to e1:
(23)

I.4.c.e.c. construct a unit vector in the direction of vperp:

(24)

I.4.c.e.d. construct a unit vector e3 perpendicular to e1
and e2:

(25)

I.4.c.e.e. choose two random numbersξ2 and ξ3 from a
standard normal distribution (mean=1, sd =1).

I.4.c.e.f. construct the vector

(26)
I.4.c.e.g. Proceed to step I.5.
I.5. Distribute the relative velocity change over the two

particles:

(27)

(28)

In this way the velocities of the particles are updated
while the total momentum  miνi + mj νj is conserved.

The particle velocities are updated after each impulsive
event, not at the end of each step. This is necessary, as a
single particle may be involved in more than one pair event.

Thermostat behaviour
How the total energy changes by the involvement of

friction and noise? The total energy leads to a temperature
change determined by the specific heat of the system. In
the case of pairwise friction and noise the temperature

appears to relax with a first-order process toward the
reference temperature. The derivation that follows is valid
for the non-constraint case.

The energy change concerns 1, 2 or 3 degrees of
freedom; this is related to the relative velocity of two

particles, with reduced mass . The di-

mensionality is studied in three cases:
- d = 1 when a component in one direction is considered

as in the par case (dpd);
- d = 2 when a component in a plane is considered as in

the perp case;
- d = 3 in the iso case.
The energy change due to the application of one

impulsive friction and noise event in d dimensions of the
relative velocity vector of a selected pair is given by:

where T is given by

(31)

Using

(32)

valid for the usual case where the rate constant of the
thermostat is smaller than the intrinsic exchange rate
between kinetic and potential energy. From (32) we arrive
at the rate equation for the temperature:

(33)

where the sum is to be taken over all d-dimensional events
per time step. This is a first-order decay towards the
reference temperature with rate constant

(34)

We note that in the case of very strong thermostats 

should be replaced by the total number of degrees of
freedom.

In the particular case that for all particles in the system
one pair is selected in every time step and the velocity
reduction factor f is weighted by a distance-dependent

factor, i.c. ,  where rc is a cut-off range used in the
neighbor selection, the resulting equation for the time
constant of the thermostat is:

(35)

where cV is the specific heat per particle and d is the
dimensionality of the applied friction and noise:

- for iso d = 3;

(29)

  (30)
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Fig. 1 Deviation from the reference temperature as a
function of friction rate γ and τT = {1.0, 1, 10} for MARTINI

water; in the DPD – B simulation for the three coupling
schemes (iso, dpd, perp). Temperature deviation within

expected boundaries. In these simulations, the time step
was 2fs.

Fig. 2 Inverse diffusion constant versus effective friction rate for
„iso” DPD – B simulation coupling scheme used with MARTINI

water systems.

- for dpd (par) d = 1;
- for perp d = 2.
The averages are to be taken over the randomly selected

pairs. Given a radial distribution function g(r) and a cut-off
radius rc, such averages are determined from

(36)

When we combine the two thermostats, the rate
constant kthermal is given by:

(37)

where kBer is computed with equation (14) and kDPD with
equation (35).

Experimental part
Simulation details The algorithms presented in the

previous sections were implemented in the GROMACS
program package [11] version 4.0.7, using parallelization
[8, 13] based on domain decomposition. In this section,
we will present the simulation results of the new algorithms
on MARTINI course grained water [12]. In future we plan
to apply the presented algorithms to more complicated
molecular systems, namely to polymers for studying their
properties.

  All simulations for MARTINI water were performed in a
periodic cubic box with dimensions longer than twice the
cut-off distance. A cut-off distance was set at 1.2 nm. To
minimize cut-off artifacts the potential was modified by a
shift function to be zero at the cut-off, the force decaying
smoothly to zero from 0.9 nm to the cut-off [14]. In all
simulations a time step of 2fs was used. The reference
temperature was set to 320K.

The MARTINI water systems consisted of 3200 particles
with mass 72u in a cubic box of (7.28856 nm3). The initial
velocities of the particles were obtained from a Maxwell-
Boltzmann distribution corresponding to the chosen initial
reference temperature. Simulations where 250000 steps
long, for diffusion and thermal rate calculations,
respectively.

For the computation of the diffusion constant, we used
the mean square displacement (MSD) and applied the gmsd
function of Gromacs. This function computes the mean
square displacement of atoms from a set of initial positions.
This provides an easy way to compute the diffusion
constant using the Einstein relation. Thermal rate constants
were determined from least-squares fits to a single
exponential of the temperature after switching the
reference temperature at time t = 0 from 350K to 320K.
Each case was repeated 8 times, yielding 8 independent
determinations ki of the rate constant; we report the
averages k  with standard uncertainty σ computed from

Results and discussions
Figure 1 covers the temperature deviation for the DPD –

B (Dissipative Particle Dynamics – Berendsen thermostat)
simulations. Figure 1 shows that for the “iso” coupling
scheme the smallest deviation is for τT = 0.1 and also that
the temperature is maintained between expected
boundaries for all three algorithms.

Figure 2, 3 and 4 shows the inverse of diffusion for the
new thermostat (DPD – B) as function of coupling strength.
As expected, for different values of the coupling parameter
ôT ={ 0.1, 1, 10 },  the data points are almost identical; this
means that the global Berendsen thermostat did not
influence the diffusion. For DPD we observe that the
diffusion (a dynamic property) is influenced by the strength
of DPD coupling for all three DPD versions, as expected.

In the case of the prediction of the thermal rate we used:
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Fig. 5 Thermal relaxation rate versus effective friction rate for the
DPD – B simulation in the iso case, with a MARTINI water systems

and for τT = 1. We observe a good agreement between the
theoretical prediction and obtained simulations values for the iso

case. Similar conclusions for dpd and perp cases.

Fig. 3 Inverse diffusion constant versus effective friction rate for
„dpd” DPD – B simulation coupling scheme used with MARTINI

water systems

Fig. 4 Inverse diffusion constant versus effective friction rate for
„perp” DPD – B simulation coupling scheme used with MARTINI

water systems

For the DPD – B thermostat case, the equation for the
thermal rate constant kth is (see equations (14), (35)):

and ; with d = {1,2,3} for
the iso, dpd or perp
cases.

We observe a match between the theoretical values
computed and the values obtained from simulations for all
three DPD variants (fig. 5).

Conclusions
This article describes the theoretical background and

simulations results for a new thermostat obtained by
combining DPD – Berendsen thermostats. We analyze
some properties like: temperature, diffusion or thermal rate
constant. The thermostat provides a predictable behaviour
with temperatures that do not deviate from the reference
and with a good thermal rate constant agreement between
simulations and theoretical computation.

In [2], the global Berendsen thermostat did not influence
the diffusion. In this paper, the global Berendsen thermostat
has a similar effect for the combined DPD – Berendsen
thermostat. The agreement between the theoretical
prediction and simulations values for the thermal rate
constants is also quite good.

Future wok includes applying this algorithm for studying
the properties of polymers with the scope of improving
materials based on polymers.
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